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W INTRODUCTION

Chemiexcitation of metastable electronic states of atoms and

small molecules has been suggested as a means of achieving efficient,

CW laser operation in the visible (and near IR and UV) wavelength region

: (see for example, refs. 1 and 2). The advantage of utilizing a metastable

state as the upper laser level stems from the fact that for maintaining

steady state population inversion, the effective lifetime of the upper

b level must exceed that of the lower level [1-3]. Favorable lifetime

£ ratios can be obtained in various ways [1,3), but a long radiative lifetime
of the upper level eases the burden on the need for fast quenching (or

;j removal) of the lower level. In addition, metastability of the emitting

- | state minimizes the danger of parasitic oscillations (due to high fain).
Moreover, long lifetime of the lasing state is essential for using

4; chemical reactions to feed this state since the overall rate of the

; reactions is limited by the diffusive mixing rate. Indeed, these properties

characterize the lasing atom in the first and only electronic transition

chemical laser, namely, the CW iodine laser. However, the lasing level

is populated by the one step, resonant energy transfer of ~ 1 eV from

OZ(IA) to the I atom and therefore emits in the infrared. The.

present research is aimed at providing guidelines for obtaining visible

N chemical lasers via multistep excitation of metastable states by singlet

v oxygen.

Species with metastable states that might serve as visible (or near
. visible) CW lasers are heavy atoms with the pz. p3 and p‘ ground-

state configuration: Sn and Pb, Sb and Bi, and Se and Te,

respectively. Some of the intra-configuration transition probabilities




2

A
3

¥

of these atoms are in t/he range of 1-100 sc;c'1 (4] (note that for

the lasing transition im the iodine atom the probability is 7.8 sec™)).
P"‘ The energy levels and tihe strongest transitions within the ground-
i

. state configuration of “hese atoms are presented in table 1. The

d

data is from [4]. Examination of the table reveals that all of the

metastable states can be populated as a result of one to three fruitful

ARPAL 5%
2 Al

collisions of a ground state atom with 0,('a) (E = 7882 co™!) and/or

N 02(12) (E = 13121 cn'}) molecule (the latter is obtained from lA by

~:‘:‘ energy pooling); some axf these collisional energy transfer steps are

;\ highly resonant.

A

i The reactions of awr excited atoms with ground state oxygen have

é,. been studied thoroughly (see ref. S and refs. cited therein and numerous
;:: additional publications by D. Husain and coworkers, mainly in J.C.S.
3:-: Faraday Trans. II, J. Phys. Chem. and J. Photochem. from 1974 on), but
k:\‘ very little is known abwut the total cross section for reactions of

}; singlet oxygen with these atoms or about the branching ratios of chemical
;:\: reactions vs. energy twransfer. It is expected that when the chemical
1 reaction is endoergic axr only slightly exoergic, energy transfer will

'i( prevail. Fortunately, the reactions of ground state 02 with our atoms,
z; : except Sn, are very enuioergic (> 0.7 eV) [6]; the reactions of l_A

i are either endoergic (with Pb, Bi and Te) or slightly exoergic (with Sb
::: and Se) and the reactiom of 1: is thermoneutral with Bi and slightly
,‘_ exoergic with Pb and Te. It is expected, therefore, that in a fast
" flow system, these reactions will result, mainly, in atomic excitation
, in the region closest =» the 0,/metal atoms mixing zone. Further downstream
e
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the excited atoms may react chemically with 02 and their reactions

can be studied. It should be noted that these reactions produce metal
sonoxides. Examination of the energy levels of the monoxides of our
atoms [6], reveal that they can be excited by energy transfer from

singlet oxygen.

The present research has been the first part of a continued effort
to thoroughly study the kineticSand spectroscopy of the heavy- atoms/
single ti-oxygen mistures. The measurements were conducted in a flowing
afterglow reactor to which a metal evaporation furnace and a singlet oxvgen

generator are interfaced [7]. The atoms studied so far were Pb and Bi.

EXPERIMENTAL

1. New design of the reactor.

In the reactor used in our preliminary studies of metal-atoms/singlet
oxygen reactions [7], clogging of the furnace precluded its prolonged
(for more than about an hour) and stable operation, especially at high
temperatures. Therefore, a new design of the reactor was tried [8].

The main reason for clogging in the previous reactor was the reaction of
oxygen with metal vapor at the outlet of the furnace. In the new reactor
the oxygen was introduced 14 ¢m downstream of the furnace outlet and,

thus, clogging problems were completely eliminated.




\
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Another problem encountered in the previous reactor was coating of
the observation windows by metal and metal oxide vapors. Purging the
windows with inewt gas, using a narrow hose aimed at the center of the

window, reduced but did not eliminate coating. In the new reactor a

symmetric, homogenous and fast flow of gas from the circumference toward
the center of the window was applied. With this method of purging, about
60 hours of reactor operation (as compared to a couple of hours in the

previous reactor) was possible before coating on the window was detectable.

A useful change in the reactor, that will be fully exploited in

future experiments, was the addition of observation windows to the flow

tube downstream to the metal-atoms/oxygen mixing zone to allow monitoring

of the reactive species at various observation points.

2. Singlet oxygen generation

|
In the present experiments the singlet oxygen was produced by operating !
microwave discharge in oxygen (see ref. 7 for details). Using this 1
method, 02(16) in concentrations of up to ~ 10%can be obtained ([9]. ‘
It is planned that in future experiments a chemical generator, capable of

producing higher concentration of OZ(IA), will be used. This generator

has already been built. It is similar to the one described in ref. 10

except that the CLZ/HZO2 reactor where Oz(lA) is produced is spherical

rather than cylindrical (in order to minimize splashing when large amounts

of reagents are used) and that a closed cycle cooling system for the

195 k water vapor trap (see ref.10) was added.
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3. Detection of reaction products

The species produced via the metal-atom/singlet oxygen interaction
were monitored using laser induced fluorescence (LIF) and emission
spectroscopy techniques. For the LIF measurements,an excimer pumped
dye laser (Lambda Physik EMG101MSC/FL2002) was used. The laser beam was
shined along the center of the flow tube and the induced fluorescence
was monitored at right angle to the beam through the observation windows

via a filter/photomultiplier/amplifier/recorder systenm.

For luminescence measurements a monochromater/photomultiplier/pico-
ammeter/recorder system was used. The monochromator (0.5® Spex model
1870) was equipped with grating blazed for 500 nm (first order). The

photomultiplier tube (Hamamatsu R-928) was thermoelectrically cooled.

RESULTS AND DISCUSSION

1. LIF measurements in the Pb/O2 mixture

From our preliminary experiments conducted in the ?b/O2 systea it
was concluded that electronically excited PbO is produced via the

reaction sequence [7]

PC’P,) +0,(18) » PrOCX,v) + 0CP), m
PbO(X,v) + 0,(18) + PbO(a, b) + 0,°5), (2)

where a, b denote the lowest electronically excited states of PbO

(see fig. 1). It was argued in ref. 7 that since the- a snd ¥ -states
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The lowest energy levels of 02. Pb and PbO.
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lie 3 2eV above PbO(X,v = 0) whereas energy transfer from OZ(IA,lz)
can provide ¢ l.6eV, the PbO precursor must be vibrationally excited
to 3 0.4eV. Our first application of the LIF technique in the

present research has been to monitor the vibrational population of PbO(X)

in order to establish the excitation mechanism.

PbO transitions were excited at wavelengths around 450 nm using
coumarin dyes. Vibrational population of PbO(X) up to v =35 was
easily detected. These LIF measurements thus corroborate the above
mentioned excitation mechanisms (note that v = 5 lie ~ O.4ev above

v = 0). Further spectroscopic studies of the PbO states produced in

the Pb/O2 mixture are now in progress and will be reported in the

future.

2. Emission from the Bi/O2 mixture

Mixing of ground state oxygen with bismuth vapor did not result in
any visible reaction or measurable amount of excited species. When the

microwave discharge was operated on the O, a reddish, diffuse flame

2
was produced, extending to about 10 cm downstream of the mixing zone,
and emission from excited 02, Bi, Bi2 and BiQ0 was observed. The lowest
energy levels of 02, Bi, Biz and BiO are presented in fig. 2.
The reddish color changed to whitish upon increasing the amount of 02
and many unassigped bands appeared in the spectrum, probably due to
emission from polyatomic oxides of Bi. The results reported herein

were obtained from the reddish flame; the 02 pressure was from 0.1 - 0.3

Torr and that of the Ar carrier gas for the Bi vapor 2.2 Torr,

SN et MG
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the Ar purge gas added 0.1 Torr to the total pressure (2.4 - 2.7 Torr).
The concentration of bismuth was not measured, but from comparison to
measurements of copper vapor concentration carried out using the same
furnace [11] we estimate that the former is limited within the range

13 3 at the observation window for crucible

of 10% - 10" atom e
temperature from 400 - 800°C. Note that the bismuth vapor consists of
~50-70% Bi2 molecules in this temperature range, the rest being

Bi atoms [12,13].

The emission spectrum from 300 - 900 nm was recorded as a function
of the crucible temperature at fixed flow conditions. The following

transitions have been observed.

1 3

a) o0 t;,vso-vt;,szat 762 na.

2

b) Bi: Zp,,, %

3/2 at 875 nm.

3/2

© Biy A0, v=0-15) » X(lt;, v = 0-12) ‘from 550-640 nn.

4 Bio: A(Zns, v=1-24) + xlczn,,, v = )-11)from 5$50-800 nm.

Detailed analysis of the spectra is now in progress {14}.° However,

from the general features of the spectra and from the temperature
dependence of the intensities of the emission from the excited species,
presented in table 2, some interesting conclusions regarding the kinetics

of the Bi/O2 system can be drawn.

The most striking features of the spectra are the intensity of the

forbidden 81(203/2 - 453/2) line at 875 nm at crucible temperatures
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: around 650°C (note that the instrument wavelength response was relatively
- poor at this wavelength) and the increase of the Oz(lt) emission intensity
l with temperature (i.e. with Bi and Bi, concentration) up to 600°C.

Since the only excited Species initially available in significant concen-
: trations in the reaction mixture is O ( A) (note that 1——1 downstream
. of the discharged 02 < 10 {15] ), the first step of exgitltion of other
species must involve 02( A). Since excitation/reaction of ground state
-, Bi by/with OZ(IA) is energetically <xcluded (note also that four center
Teaction of Bi2 with 0z to produce 2Bi0 is very improbable), the

initial excitation step in the reaction mixture must be

.

2 1 . 3 v

B 02( a) + 812(X') *-02( L) « Bi, (3)

f where the asterik denotes excitation to either the X or the B state
(see fig. 2). The increase of Oz(lz)concentration with that of Biz is
most probably due to the energy pooling process

2 1 . 1 .

? 02( a) + 812(8) - 02( L) + Blz(x or X'). (4)

k-

3!

N Enhancement of 02(12) emission due to similar energy pooling processes

N have been observed in 0,/ I, [16] and O,/Pb mixtures(7]. Bi(ZD )

i 2" "2 2 3/2

iy can then be formed via the spin-allowed, resonant energy transfer process

“*

: o,(lz,v = 0) + Bi(*,,,) ~0,(°t, v= 1) + 8ic%D,,.) (s)

N PAN 3/2 AN 3/2°°

Bi,(A) can similarly be produced:

A 1 . k IR

" 0,("2) + Bi,(B) + 0,( ) ¢ Bi,(A). (6)

ORI T g DRy Iy O AT S ﬁ
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VA Once the metastable Bi(2D3/2) and 02(12) have been produced in
‘;3 significant amounts, several channels are open for reaction of Bi with
e
‘Ej 0, (where at least one of them is excited to 3 1.6eV) to produce BiO.
‘ .
"v

Excitation of BiO to the A state can then take place via collisions

with Oz(lA or 1) (see fig. 2). Note that the short lived Bi,(A),

with radiative lifetime of a few hundreds of nanoseconds {13}, is not

e
Pl sl s pa)

expected to react significantly under the present experimental conditions

3§j (relatively low concentration of potential reactive partners).
o
,:f The reaction scheme outlined above accounts for the simultaneous
L
production of excited species cbserved in the reaction mixture. It also

L
o is consistent with the fact that upon increasing the temperature from 600
E«i to 650°C, 02(12) emission intensity decreases whereas that of the other
195
. species increases. Probably, when [Bi] and [Biz] rise above certain
R .
ig limit the consumption rate of OZ(IZ)in reactions (5) and (6) and in
N
e reactions producing BiO surpasses its production rate in reaction (4).
v}; At still higher concentration of Bi and Biz, most OZ(IA) is consumed
e in reaction (3) and production of all emitting species is supressed (see
zk"‘ tab le 2) 3
- SUMMARY
A .)ﬂ e —
e

vis The results of the measurements carried out in Pb/O2 and Bi/O2

S mixtures show that significant electronic excitation of metal atoms, metal
,ﬁf dimers and metal oxides can be obtained via multiple collisions with singlet

a

) molecular oxygen. The mechanisms for Pb* and PbO* production have
{S; previously been explained on the basis of emission and absorption spectroscopy !
] |
{s1 J‘

: 4
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studies [7]. The present LIF measurements corroborate the mechanism

for PbO* formation.

Mechanisms for production of excited species in Bi/O2 are inferred
from the dependence of the emission intensity from these species on [Bi]
and [BiZ]. In particular, it is suggested that the strong emission from
Bi(zbslz) must originate from energy transfer from 02(12) which, in tum,

is produced via multiple collisions of OZ(IA) with Biz.

The results of the present research are encouraging regarding the
prospects of obtaining significant concentrations of atomic and molecular
species via multiple collision with singlet molecular oxygen. Fof assessing
the potential of this method for achieving short wavelength chemical
lasers, more spectroscopic and kinetic work is needed. Some work on this

subject is now in progress in our laboratory and will be published in the

near future.
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